Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Experimental & Molecular Medicine ; : 134-143, 2006.
Article in English | WPRIM | ID: wpr-15698

ABSTRACT

Lysophosphatidic acid (LPA) is a phospholipid growth factor that acts through G-protein-coupled receptors. Previously, we demonstrated an altered profile of LPA-dependent cAMP content during the aging process of human diploid fibroblasts (HDFs). In attempts to define the molecular events associated with the age-dependent changes in cAMP profiles, we determined the protein kinase A (PKA) activity, phosphorylation of cAMP-response element binding protein (CREB), and the protein expression of CRE-regulatory genes, c-fos and COX-2 in young and senescent HDFs. We observed in senescent cells, an increase in mRNA levels of the catalytic subunit a of PKA and of the major regulatory subunit Ia. Senescence-associated increase of cAMP after LPA treatment correlated well with increased CREB phosphorylation accompanying activation of PKA in senescent cells. In senescent cells, after LPA treatment, the expression of c-fos and COX-2 decreased initially, followed by an increase. In young HDFs, CREB phosphorylation decreased following LPA treatment, and both c-fos and COX-2 protein levels increased rapidly. CRE-luciferase assay revealed higher basal CRE-dependent gene expression in young HDFs compared to senescent HDFs. However, LPA-dependent slope of luciferase increased more rapidly in senescent cells than in young cells, presumably due to an increase of LPA-induced CREB phosphorylation. CRE-dependent luciferase activation was abrogated in the presence of inhibitors of PKC, MEK1, p38MAPK, and PKA, in both young and senescent HDFs. We conclude that these kinase are coactivators of the expression of CRE-responsive genes in LPA-induced HDFs and that their changed activities during the aging process contribute to the final expression level of CRE-responsive genes.


Subject(s)
Male , Humans , Time Factors , Protein Kinase Inhibitors/pharmacology , Phosphorylation , Lysophospholipids/pharmacology , Luciferases/genetics , Gene Expression/drug effects , Fibroblasts/cytology , Diploidy , Cyclic AMP-Dependent Protein Kinases/genetics , Cyclic AMP Response Element-Binding Protein/metabolism , Cyclic AMP/metabolism , Cells, Cultured , Cellular Senescence/physiology , Catalytic Domain/genetics
2.
Experimental & Molecular Medicine ; : 37-45, 2001.
Article in English | WPRIM | ID: wpr-31943

ABSTRACT

Heterotrimeric GTP-binding proteins (G protein) are known to participate in the transduction of signals from ligand activated receptors to effector molecules to elicit cellular responses. Sustained activation of cAMP-G protein signaling system by agonist results in desensitization of the pathway at receptor levels, however it is not clear whether such receptor responses induce other changes in post-receptor signaling path that are associated with maintenance of AMP levels, i.e. cAMP-forming adenylate cyclase (AC), cAMP-degrading cyclic nucleotide phosphodiesterase (PDE) and cAMP-dependent protein kinase (PKA). Experiments were performed to determine the expression of AC, PDE, and PKA isoforms in SH-SY5Y neuroblastoma cells, in which cAMP system was activated by expressing a constitutively activated mutant of stimulatory G protein (Q227L Gsalpha). Expression of ACI mRNA was increased, but levels of ACVIII and ACIX mRNA were decreased. All of the 4 expressed isoforms of PDE (PDE1C, PDE2, PDE 4A, and PDE4B) were increased in mRNA expression; the levels of PKA RIalpha, RIbeta, and RIIbeta were increased moderately, however, those of RIIalpha and Calpha were increased remarkably. The activities of AC, PDE and PKA were also increased in the SH-SY5Y cells expressing Q227L Gsalpha. The similar changes in expression and activity of AC, PDE and PKA were observed in the SH-SY5Y cells treated with dbcAMP for 6 days. Consequently, it is concluded that the cAMP system adapts at the post-receptor level to a sustained activation of the system by differential expression of the isoforms of AC, PDE, and PKA in SH-SY5Y neuroblastoma. We also showed that an increase in cellular cAMP concentration might mediate the observed changes in the cAMP system.


Subject(s)
Humans , 3',5'-Cyclic-AMP Phosphodiesterases/genetics , Adenylyl Cyclases/genetics , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinases/genetics , GTP-Binding Protein alpha Subunits, Gs/genetics , Heterotrimeric GTP-Binding Proteins/genetics , Isoenzymes , Isoproterenol/pharmacology , Mutation , Neuroblastoma/metabolism , Signal Transduction , Tumor Cells, Cultured
3.
Biol. Res ; 26(1/2): 257-65, 1993. ilus
Article in English | LILACS | ID: lil-228609

ABSTRACT

cAMP is involved in the differentiation of Trypanosoma cruzi, the causative agent of Chagas' disease. cAMP levels are elevated in the infective, non-dividing metacyclic trypomastigote stage, with respect to the non-infective, proliferative, epimastigote stage. In both stages three is a cAMP receptor protein (CARPT), with unique properties that differentiate it from the regulatory subunits of the cAMP-dependent protein kinase (RI and RII). The CARPT from T. cruzi epimastigotes was purified using ion-exchange chromatography, affinity chromatography and gel filtration. After the final step of purification, two protein bands were obtained, p89 and p70, corresponding to the intact CARPT and its proteolytic product. These two CARPT polypeptides were utilized to prepare polyclonal antibodies in rabbits. Previous results from our laboratory showed that CARPT cross-reacts with polyclonal antibodies prepared against the regulatory subunit (RII) of the cAMP-dependent protein kinase (PKA). As expected from these results, the anti-CARPT antibody recognized purified RII protein in an ELISA assay. The anti-CARPT antibodies were used for immunoblot analyses of epimastigote lysates. The two bands corresponding to the CARPT (p89 and p70), as well as a p40 band, were recognized. Immunoscreening of a T. cruzi lambda ZAP cDNA library with these anti-CARPT polyclonal antibodies yielded one positive clone (pBSCARPT) which contained a 540 bp insert. Northern analyses using the pBSCARPT clone as a probe, showed a 5.2 kb mRNA band in epimastigotes, which were grown in culture from 2 to 10 days in LIT medium. Sequence analyses of the 540 bp insert have failed to show homology to other gene sequences in the database.(ABSTRACT TRUNCATED AT 250 WORDS)


Subject(s)
Animals , Rabbits , Cyclic AMP Receptor Protein/isolation & purification , DNA, Complementary/genetics , DNA, Protozoan/genetics , Trypanosoma cruzi/genetics , Base Sequence , Cloning, Molecular , Cyclic AMP Receptor Protein/genetics , Cyclic AMP-Dependent Protein Kinases/genetics , Molecular Sequence Data , Trypanosoma cruzi/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL